Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 1.238
Filter
Add filters

Year range
1.
Nevrologiya, Neiropsikhiatriya, Psikhosomatika ; 14(6):40-48, 2022.
Article in Russian | EMBASE | ID: covidwho-20245191

ABSTRACT

Amantadine has begun to be used as a possible alternative in COVID-19 therapy to mitigate its effects. There is anecdotal evidence that patients with Parkinson's disease (PD) treated with amantadine and who test positive for COVID-19 often do not develop clinical manifestations of COVID-19. Objective(s): to compare the clinical course of COVID-19 in patients with PD who took or did not take amantadine sulfate. Patients and methods. A prospective continuous study included 142 patients with PD who were treated in Republican Clinical Diagnostic Center for Extrapyramidal Pathology and Botulinum Therapy in Kazan from October 2021 to January 2022. Patients filled out a proprietary internally developed questionnaire. Results and discussion. Out of 142 individuals with PD COVID-19 occurred in 77 (54.2%), of which 52.0% had a mild course, 39.0% had a moderate course, 2.6% had a severe course, and in 6.5% the severity of the disease has not been established. Deterioration after COVID-19 infection was noted by 36% of patients: the appearance or increase in motor fluctuations (41%), increased tremor, stiffness or slowness (31%), the appearance of "exhaustion" of the effect of a single dose of levodopa (13%), the appearance or increased dyskinesia (21%), hallucinations (3.5%). Patients taking amantadine sulfate had PD much longer (11.5+/-5.62 years versus 5.12+/-3.24 years) and had a more pronounced (III-IV) stage of the disease. These patients were more likely to experience mild COVID-19 (in 60.87% of cases), in contrast to patients not receiving amantadine sulfate (only in 48.15% of cases). There was no correlation between the severity of COVID-19 and levodopa intake. Conclusion. The results of the study showed that patients with PD taking amantadine sulfate are more likely to have a mild course of COVID-19.Copyright © 2022 Ima-Press Publishing House. All rights reserved.

2.
Early Intervention in Psychiatry ; 17(Supplement 1):106, 2023.
Article in English | EMBASE | ID: covidwho-20244168

ABSTRACT

Aims: Trauma is particularly prevalent amongst Early Intervention (EI) patients and is associated with adverse clinical and prognostic outcomes. To determine the feasibility of a large-scale randomized controlled trial (RCT) of an 'EMDR for psychosis' intervention for trauma survivors with active psychotic symptoms supported by EI services, we conducted a single-blind RCT comparing 16 sessions of EMDRp + TAU versus TAU only. Method(s): EMDRp therapy and trial assessments were completed both in-person and remotely during the COVID-19 pandemic, and key feasibility outcomes (recruitment & retention, therapy attendance/ engagement, adherence to EMPRp treatment protocol, and the 'promise of efficacy' of EMDRp on relevant clinical outcomes) were examined at 6- and 12-month post-randomization assessments. Results and Conclusion(s): 60 participants (100% of the recruitment target) received TAU or EMDR + TAU. The feasibility criteria examined in this trial were fully met, and EMDRp was associated with promising signals of efficacy on a range of valuable post-treatment outcomes, including improved psychotic symptoms (PANSS), subjective recovery (QPR), post-traumatic symptoms (PCL-5;ITQ), depression (PHQ-9), anxiety (GAD-7) and general health status (EQ-5D-VAS) at the 6-month assessment. Signals of efficacy at 12-month were less pronounced, but remained robust for trauma symptoms and general health status. The findings will be discussed with relevance to future clinical trials of trauma-focused therapy in clients with early psychosis, and the provision of more tailored trauma therapies for EI service users.

3.
Clinical Immunology ; Conference: 2023 Clinical Immunology Society Annual Meeting: Immune Deficiency and Dysregulation North American Conference. St. Louis United States. 250(Supplement) (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-20243635

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a fatal pandemic viral disease caused by the severe acute respiratory syndrome corona virus type-2 (SARS-CoV-2). The aim of this study is to observe the associations of IL-6, SARS-COV-2 viral load (RNAemia), IL- 6 gene polymorphism and lymphocytes and monocytes in peripheral blood with disease severity in COVID-19 patients. This study was carried out from March 2021 to January 2022. RT-PCR positive 84 COVID-19 patients and 28 healthy subjects were enrolled. Blood was collected to detect SARS-COV-2 viral RNA (RNAemia) by rRT-PCR, serum IL-6 level by chemiluminescence method, SNPs of IL-6 by SSP-PCR, immunophenotyping of lymphocytes and monocyte by flow cytometry. Serum IL-6 level (pg/ml) was considerably high among critical patients (102.02 +/- 149.7) compared to severe (67.20 +/- 129.5) and moderate patients (47.04 +/- 106.5) and healthy controls (3.5 +/- 1.8). Serum SARS-CoV-2 nucleic acid positive cases detected mostly in critical patients (39.28%) and was correlated with extremely high IL-6 level and high mortality (R =.912, P < 0.001). Correlation between IL-6 and monocyte was statistically significant with disease severity (severe group, p < 0.001, and 0.867*** and critical group p < 0.001 and 0.887***). In healthy controls, moderate, severe and critically ill COVID-19 patients, IL-6 174G/C (rs 1800795) GG genotype was 82.14%, 89.20%, 67.85% and 53.57% respectively. CC and GC genotype had strong association with severity of COVID-19 when compared with GG genotype. Significant statistical difference found in genotypes between critical and moderate groups (p < 0.001, OR-10.316, CI-3.22-23.86), where CC genotype was associated with COVID-19 severity and mortality. The absolute count of T cell, B cell, NK cell, CD4+ T cells and CD8+ T cells were significantly decreased in critical group compared to healthy, moderate and severe group (P < 0.001). Exhaustion marker CD94/NKG2A was increased on NK cells and CD8+ cytotoxic T cell among critical and severe group. Absolute count of monocyte was significantly increased in critical group (P < 0.001). Serum IL-6, IL-6 174 G/C gene and SARS-CoV-2 RNAaemia can be used in clinical practice for risk assessment;T cell subsets and monocyte as biomarkers for monitoring COVID-19 severity. Monoclonal antibody targeting IL-6 receptor and NKG2A for therapeutics may prevent disease progression and decrease morbidity and mortality.Copyright © 2023 Elsevier Inc.

4.
European Journal of Human Genetics ; 31(Supplement 1):635-636, 2023.
Article in English | EMBASE | ID: covidwho-20243246

ABSTRACT

Background/Objectives: Corticosteroids are widely used for the treatment of coronavirus disease (COVID)-19 caused by SARS-CoV- 2 as they attenuate the immune response with their antiinflammatory properties. Genetic polymorphisms of glucocorticoid receptor, metabolizing enzymes or transporters may affect treatment response to dexamethasone. The aim of this study was to evaluate the association of polymorphisms in glucocorticoid pathway with disease severity and duration of dexamethasone treatment in COVID-19 patients. Method(s): Our study included 107 hospitalized COVID-19 patients treated with dexamethasone. We isolated DNA from peripheral blood and genotyped all samples for polymorphisms in NR3C1 (rs6198, rs33388), CYP3A4 (rs35599367), CYP3A5 (rs776746), GSTP1 (rs1695, rs1138272), GSTM1/GSTT1 deletions and ABCB1 (1045642, rs1128503, rs2032582 Fisher's and Mann- Whitney tests were used in statistical analysis. Result(s): The median (min-max) age of the included patients was 62 (26-85) years, 69.2 % were male and 30.8 % female and they had moderate (1.9 %), severe (83 %) or critical (15.1 %) disease. NR3C1 rs6198 polymorphism was associated with more severe disease in additive genetic model (P = 0.022). NR3C1 rs6198, ABCB1 rs1045642 and ABCB1 rs1128503 polymorphisms were associated with a shorter duration of dexamethasone treatment in additive (P = 0.048, P = 0.047 and P = 0.024, respectively) and dominant genetic models (P = 0.015, P = 0.048 and P = 0.020, respectively), while carriers of the polymorphic CYP3A4 rs35599367 allele required longer treatment with dexamethasone (P = 0.033). Other polymorphisms were not associated with disease severity or dexamethasone treatment duration. Conclusion(s): Genetic variability of glucocorticoid pathway genes was associated with the duration of dexamethasone treatment of COVID-19 patients.

5.
European Journal of Human Genetics ; 31(Supplement 1):706, 2023.
Article in English | EMBASE | ID: covidwho-20243198

ABSTRACT

Background/Objectives: Chemosensory dysfunction is a hallmark of SARS-CoV-2 infection;nevertheless, the genetic factors predisposing to long-term smell and taste loss are still unknown. This study aims to identify candidate genes possibly involved in persistent smell/taste loss through Whole Genome Sequencing (WGS) analysis of a large cohort of 130 fully characterised Italian individuals, previously diagnosed with COVID-19. Method(s): DNA of all analysed patients was used to perform WGS analysis, and a detailed personal anamnesis was collected. Moreover, orthonasal function was assessed through the extended Sniffin' Sticks test, retronasal function was tested with 20 powdered tasteless aromas, and taste was determined with validated Taste Strips. Self-reported smell and taste alterations were assessed via Visual Analog Scales plus questionnaires. Result(s): The clinical evaluation allowed to classify the patients in two groups: 88 cases affected by persistent smell dysfunction (median age, 49) and 42 controls (median age, 51). Among cases, 26.1% (n = 23) were functionally anosmic and 73.9% (n = 65) were hyposmic. Within cases, 77 underwent the taste strip test: 53.2% (n = 41) presented hypogeusia and 46.8% (n = 36) were normogeusic. Preliminary WGS results on a first subset of 76 samples confirmed the important role of UGT2A1 gene, previously described as involved in smell loss. Interestingly, we identified a nonsense variant (rs111696697, MAF 0.046) significantly associated with anosmia in males (p-value: 0.0183). Conclusion(s): Here, for the first time a large cohort of patients, fully characterised through a comprehensive psychophysical evaluation of smell and taste, have been analysed to better define the genetic bases of COVID-19-related persistent chemosensory dysfunction.

6.
Indian Journal of Medical and Paediatric Oncology ; 2023.
Article in English | Web of Science | ID: covidwho-20242172

ABSTRACT

Introduction Children with cancer are immunocompromised due to the disease per se or anticancer therapy. Children are believed to be at a lower risk of severe coronavirus disease 2019 (COVID-19) disease.Objective This study analyzed the outcome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in children with cancer.Materials and Methods A retrospective analysis was performed on patients (<= 14 years) with cancer attending the pediatric oncology services of our institute who tested positive for the SARS-CoV-2 infection and those who had COVID-19 disease between August 2020 and May 2021. Real-time reverse transcriptase-polymerase chain reaction performed on the nasopharyngeal swab identified the SARS-CoV-2 infection. The primary endpoints were clinical recovery, interruption of cancer treatment, and associated morbidity and mortality.Results Sixty-six (5.7%) of 1,146 tests were positive for the SARS-CoV-2 infection. Fifty-two (79%) and 14 (21%) patients had hematolymphoid and solid malignancies. Thirty-two (48.5%) patients were asymptomatic. A mild-moderate, severe, or critical disease was observed in 75% (18/24), 12.5% (3/24), and 12.5% (3/24) of the symptomatic patients. The "all-cause" mortality was 7.6% (5/66), with only one (1.5%) death attributable to COVID-19. Two (3%) patients required ventilation. Two (3%) patients had a delay in cancer diagnosis secondary to COVID-19 infection. Thirty-eight (57.6%) had a disruption in anticancer treatment.Conclusion Children with cancer do not appear to be at an increased risk of severe illness due to SARS-CoV-2 infection. Our findings substantiate continuing the delivery of nonintensive anticancer treatment unless sick. However, SARS-CoV-2 infection interrupted anticancer therapy in a considerable proportion of children.

7.
Current Trends in Biotechnology and Pharmacy ; 17(2):907-916, 2023.
Article in English | EMBASE | ID: covidwho-20241386

ABSTRACT

The traditional de novo drug discovery is time consuming, costly and in some instances the drugs will fail to treat the disease which result in a huge loss to the organization. Drug repurposing is an alternative drug discovery process to overcome the limitations of the De novo drug discovery process. Ithelps for the identification of drugs to the rare diseases as well as in the pandemic situationwithin short span of time in a cost-effective way. The underlying principle of drug repurposing is that most of the drugs identified on a primary purpose have shown to treat other diseases also. One such example is Tocilizumab is primarily used for rheumatoid arthritis and it is repurposed to treat cancer and COVID-19. At present, nearly30% of the FDA approved drugs to treat various diseases are repurposed drugs. The drug repurposing is either drug-centric or disease centric and can be studied by using both experimental and in silico studies. The in silico repurpose drug discovery process is more efficient as it screens thousands of compounds from the diverse libraries within few days by various computational methods like Virtual screening, Docking, MD simulations,Machine Learning, Artificial Intelligence, Genome Wide Association Studies (GWAS), etc. with certain limitations.These limitationscan be addressed by effective integration of advanced technologies to identify a novel multi-purpose drug.Copyright © 2023, Association of Biotechnology and Pharmacy. All rights reserved.

8.
Cytotherapy ; 25(6 Supplement):S267-S268, 2023.
Article in English | EMBASE | ID: covidwho-20240749

ABSTRACT

Background & Aim: Gene therapies has become recognized for its remarkable clinical benefits in a variety of medical applications, in particular recent approval of an Ad vector-based COVID-19 vaccines have attracted recent global attention. Here, we present key considerations for GMP compliant process development for Coxsackie virus type B3 (CVB3), an oncolytic virus designed for clinical trial in triple-negative breast cancer. Methods, Results & Conclusion(s): CVB3 is a non-enveloped, linear single-strand RNA virus with a size of approximately 27-33 um in diameter. From the initial type using the zonal rotor centrifuge to the advanced type using the tangential flow filtration system and ion chromatograph, we considered the points of the design concept in constructing the manufacturing process. The final design system is constructed as a closed and single-use manufacturing system in which all processes from upstream large-scale cell culture to downstream target purification and concentration steps. In brief, HEK293 cell suspension extended in 3L serum-free medium infected with CVB3, up to 3.6 times 10 to 7 of TCID50 /mL before going to downstream steps, made total 150 mL of final products as 8.43 times 10 to 7 of TCID50/mL concentration. Although further quality control challenges remain that is removal of product-related impurities such as human cellular proteins and residual DNA/RNA to increase virus purity, this concept is effectively applicable even for other types of viruses as GMP manufacturing processes, and would be also important for technology transfer to future commercial production.Copyright © 2023 International Society for Cell & Gene Therapy

9.
Polycyclic Aromatic Compounds ; : 1-25, 2023.
Article in English | Academic Search Complete | ID: covidwho-20240242

ABSTRACT

The exocyclic double bonded α-tetralone condensate viz. (2E)-2-(4-propoxybenzylidene)-3,4-dihydro-1(2H)-naphthalene-1-one was synthesized by the Claisen–Schmidt reaction between α-Tetralone and 4-propoxybenzaldehyde in an alkaline medium. A slow evaporation technique was used to collect the single crystals. Researchers examined the detailed information provided by spectral studies. The inter- and intra-molecular interactions of the compound were identified using the single-crystal XRD investigation. Charge transfer inside organic molecules was used to calculate HOMO and LUMO energy values. In addition, MEP, NBO, NLO, topological charge distribution, and Mulliken population studies were performed for this compound. The Hirschfeld surface study showed that nonpolar or weakly polar interactions significantly contributed to the packing forces for molecules. Then, it was tested for its antioxidant, antidiabetic, and anti-inflammatory properties. The 6yb7 protein and the (2E)-2-(4-propoxybenzylidene)-3,4-dihydro-2H-naphthalen-1-one (PBDN) ligand were docked in molecular docking research.Crystal growth and spectral studies have been performed on (2E)-2-(4-propoxybenzylidene)-3,4-dihydro-2H-naphthalen-1-one (PBDN).Simulation studies were discussed.The compound PBDN has potential anti-inflammatory and anti-diabetic properties. In-silico method reveals that the PBDN is a moderate ligand for an unliganded active site on COVID-19's main protease (PDB code: 6yb7). [ FROM AUTHOR] Copyright of Polycyclic Aromatic Compounds is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

10.
How COVID-19 is Accelerating the Digital Revolution: Challenges and Opportunities ; : 31-51, 2022.
Article in English | Scopus | ID: covidwho-20240199

ABSTRACT

COVID-19 endemic has made the entire world face an extraordinary challenging situation which has made life in this world a fearsome halt and demanding numerous lives. As it has spread across 212 nations and territories and the infected cases and deaths are increased to 5,212,172 and 334,915 (as of May 22 2020). Still, it is a real hazard to human health. Severe Acute Respiratory Syndrome cause vast negative impacts economy and health populations. Professionals involved in COVID test can commit mistakes when testing for identifying the disease. Evaluating and diagnosing the disease by medical experts are the significant key factor. Technologies like machine learning and data mining helps substantially to increase the accuracy of identifying COVID. Artificial Neural Networks (ANN) has been extensively used for diagnosis. Proposed Single Hidden Layer Feedforward Neural Networks (SLFN)-COVID approach is used to detect COVID-19 for disease detection on creating the social impacts and its used for treatment. The experimental results of the proposed method outperforms well when compared to existing methods which achieves 83% of accuracy, 73% of precision, 68% of Recall, 82% of F1-Score. © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2022.

11.
Cytotherapy ; 25(6 Supplement):S239, 2023.
Article in English | EMBASE | ID: covidwho-20239698

ABSTRACT

Background & Aim: Immune checkpoint inhibitors (ICI) revolutionized solid tumor treatment, however, in many tumors only partial response is achieved. Allocetra-OTS has an immune modulating effect on macrophages and dendritic cells and showed an excellent safety profile in patients including patients with sepsis and Covid-19. Here we investigated the anti-tumoral effect of Allocetra-OTS cellular therapy, in peritoneal solid tumor animal models. Methods, Results & Conclusion(s): Allocetra-OTS is manufactured from enriched mononuclear fractions and induced to undergo early apoptosis. Balb/c mice were inoculated intraperitoneally (IP) with AB12 (mesothelioma) with pLenti-PGK-V5-Luc-Neo and treated with anti- CTLA4 with or without Allocetra-OTS. Mice were monitored daily for clinical score and weekly using IVIS (Fig.1). Kaplan-Meier log rank test was done for survival. For Allocetra-OTS preparation, enriched mononuclear fractions were collected by leukapheresis from healthy eligible human donors and induced to undergo early apoptosis. Anti- CTLA4 standalone therapy significantly improved survival (Fig.2) from mean 34+/-9 to 44.9 +/-20 days. However, OTS standalone therapy was non-inferior and improved survival to 52.3 +/-20 days. Anti-CTLA4 + Allocetra-OTS combination therapy, ameliorated survival to 86.7+/-20 days with complete cancer remission in 60-100% of mice. Similar anti- tumoral effects of Allocetra-OTS were seen in mesothelioma model in a combination therapy with either anti-PD1 or cisplatin and using anti-PD1 in ID8 ovary cancer model. Based on single cell analysis confirmed by flow cytometry and pathology, the mechanism of action seems to be related or at least associated with an increase in f/480high peritoneal macrophages and a decrease in recruited macrophages, and to f/480high infiltration of the tumor. However, further studies are needed to confirm these observations. During IP tumor progression, Allocetra-OTS as a standalone therapy or in combination with ICI, or cisplatin, significantly reduced tumor size and resulted in complete remission in up to 100% treated mice. Similar results were obtained in ID8 ovary cancer. Based on excellent safety profile in > 50 patients treated in prior clinical trials for sepsis and Covid-19, Phase I/II clinical trial of Allocetra-OTS plus chemotherapy has started and three patient already recruited. A second phase I/II clinical trial of Allocetra- OTS plus anti-PD1, as a second- and third-line therapy in various cancers, was initiated in Q1 2023. [Figure presented]Copyright © 2023 International Society for Cell & Gene Therapy

12.
European Journal of Human Genetics ; 31(Supplement 1):343-344, 2023.
Article in English | EMBASE | ID: covidwho-20239389

ABSTRACT

Background/Objectives: One of the most remarkable features of SARS-CoV-2 infection is that a large proportion of individuals are asymptomatic while others experience progressive, even lifethreatening acute respiratory distress syndrome, and some suffer from prolonged symptoms (long COVID). The contribution of host genetics to susceptibility and severity of infectious disease is well-documented, and include rare monogenic inborn errors of immunity as well as common genetic variation. Studies on genetic risk factors for long COVID have not yet been published. Method(s): We compared long COVID (1534) to COVID-19 patients (96,692) and population controls (800,353) using both questionnaire and EHR- based studies. First meta-analysis of 11 GWAS studies from 8 countries did not show genome-wide significant associations. Result(s): Testing 24 variants earlier associated to COVID-19 susceptibility or severity by COVID-19 Host Genetics Initiative showed genetic variation in rs505922, an intronic variant in ABO blood group gene, to be associated with long COVID compared to population controls (OR = 1.16, 95% CI: 1.07-1.27, p = 0.033). (Within-COVID analysis gave similar OR, but was not significant after conservative Bonferroni correction (OR = 1.17, 95% CI: 1.06-1.30, p = 092)). Conclusion(s): The first data freeze of the Long COVID Host Genetics Initiative suggests that the O blood group is associated with a 14% reduced risk for long COVID. The following data freezes with growing sample sizes will possibly elucidate long COVID pathophysiology and pave the way for possible treatments for long lasting COVID symptoms.

13.
Advances in Experimental Medicine and Biology ; 1413:vii, 2023.
Article in English | EMBASE | ID: covidwho-20239079
14.
Critical Reviews in Biomedical Engineering ; 51(1):41-58, 2023.
Article in English | EMBASE | ID: covidwho-20239064

ABSTRACT

The COVID-19 pandemic, emerging/re-emerging infections as well as other non-communicable chronic diseases, highlight the necessity of smart microfluidic point-of-care diagnostic (POC) devices and systems in developing nations as risk factors for infections, severe disease manifestations and poor clinical outcomes are highly represented in these countries. These POC devices are also becoming vital as analytical procedures executable outside of conventional laboratory settings are seen as the future of healthcare delivery. Microfluidics have grown into a revolutionary system to miniaturize chemical and biological experimentation, including disease detection and diagnosis utilizing muPads/paper-based microfluidic devices, polymer-based microfluidic devices and 3-dimensional printed microfluidic devices. Through the development of droplet digital PCR, single-cell RNA sequencing, and next-generation sequencing, microfluidics in their analogous forms have been the leading contributor to the technical advancements in medicine. Microfluidics and machine-learning-based algorithms complement each other with the possibility of scientific exploration, induced by the framework's robustness, as preliminary studies have documented significant achievements in biomedicine, such as sorting, microencapsulation, and automated detection. Despite these milestones and potential applications, the complexity of microfluidic system design, fabrication, and operation has prevented widespread adoption. As previous studies focused on microfluidic devices that can handle molecular diagnostic procedures, researchers must integrate these components with other microsystem processes like data acquisition, data processing, power supply, fluid control, and sample pretreatment to overcome the barriers to smart microfluidic commercialization.Copyright © 2023 by Begell House, Inc.

15.
Value in Health ; 26(6 Supplement):S201, 2023.
Article in English | EMBASE | ID: covidwho-20238573

ABSTRACT

Objectives: To compare pregnancy loss rates, preterm birth rates and gestational age at delivery in women vaccinated against COVID-19 during pregnancy vs. those unvaccinated. Method(s): Data were captured from Dorsata Prenatal, an electronic medical record (EMR) system that captures obstetrical data for tens of thousands of pregnancies annually. Patients who delivered between February 11, 2021-June 2, 2022, were included. The vaccinated group included women who had at least one COVID-19 vaccination documented in their EMR between 30 days prior to pregnancy and delivery. The unvaccinated group included women without a COVID-19 vaccination documented. The primary outcome measure was gestational age (GA) at delivery. We analyzed the data using chi-square tests, with significance set at p<0.01. Result(s): A total of 51,994 pregnant women were identified-7,947 (15.3%) in the vaccinated group and 44,047 (84.7%) in the unvaccinated group. Vaccination rate varied by race (Asian: 19.7%;White: 17.3%;Black: 11.2%, P<0.001), ethnicity (Latino: 8.6%;Not-Latino: 18.7%;P<0.001), marital status (Married: 19.2%;Single: 8.8%;P<0.001), mother's age (>=35 years: 20.0%;<35 years 14.2%;P<0.001), and region (Northeast: 19.2%;South: 15.2%;West: 9.1%;P<0.001). The vaccinated group had significantly lower rate of preterm delivery (Gestational Age [GA]<37 weeks;vaccinated: 7.8% vs. unvaccinated: 9.6%;P<0.001), and significantly lower rates of pregnancy loss (GA<20 weeks;vaccinated: 1.1% vs. unvaccinated: 4.1%;P<0.001). Conclusion(s): This is one of the largest real-world studies to date in women who received the COVID-19 vaccination during pregnancy. Vaccination rates varied significantly across race/ethnicity. Vaccinated patients had lower preterm delivery and pregnancy loss rates compared with unvaccinated patients.Copyright © 2023

16.
Progress in Biomedical Optics and Imaging - Proceedings of SPIE ; 12387, 2023.
Article in English | Scopus | ID: covidwho-20238479

ABSTRACT

We report a single-step, room-temperature, 5-10 minute SARS-CoV-2 saliva self-monitoring method that overcomes the limitations of existing approaches through the use of fluorophore-releasing Designer DNA Nanostructures (DDNs) that bind with the multivalent pattern of spike proteins on the exterior intact virions and an inexpensive smartphone-linked, pocket-size fluorimeter, called a "V-Pod” for its resemblance to an Apple AirPod™ headphone case. We characterize the V-Pod fluorimeter performance and the DDN-based assay to demonstrate a clinically relevant detection limit of 104 virus particles/mL for pseudo-typed WT SARS-CoV-2 and 105 virus particles/mL for real pathogenic variants, including Delta, Omicron, and D614g. © 2023 SPIE.

17.
European Journal of Human Genetics ; 31(Supplement 1):342, 2023.
Article in English | EMBASE | ID: covidwho-20238003

ABSTRACT

Background/Objectives: Despite intensive research of the novel coronavirus SARS-CoV-2 and COVID-2019 caused by it, factors affecting the severity of the disease remains poorly understood. Clinical manifestations of COVID-2019 may vary from asymptomatic form to pneumonia, acute respiratory distress syndrome (ARDS) and multiorgan failure. Features of individual genetic landscape of patients can play an important role in development of the pathological process of COVID-19. In this regard the purpose of this study was to investigate the influence of polymorphic variants in genes (ADD1, CAT, IL17F, IL23R, NOS3, IFNL3, IL6, F2, F13A1, ITGB3, HIF1A, MMP12, VEGFA), associated with cardiovascular, respiratory and autoimmune pathologies, on the severity of COVID-19 and post-COVID syndrome in patients from Russia. Method(s): The study included 200 patients recovered from COVID-19. Two groups of patients were formed in accordance with clinical manifestations: with mild and moderate forms of the disease. The polymorphic variants were analysed with real-time PCR using commercial kits (Syntol). Result(s): 13 SNPs (rs4961;rs1001179;rs612242;rs11209026;rs2070744;rs8099917;rs1800795;rs1799963;rs5985;rs5918;rs11549465;rs652438;rs699947) were genotyped and comparative analysis of allele frequency distribution was carried out in two groups of patients recovered from COVID-2019. Conclusion(s): Identification of polymorphic variants in genome associated with severity of pathological processes in patients infected with SARS-CoV-2 can contribute to the identification of individuals with an increased risk of severe infection process and can also serve as a basis for developing personalized therapeutic approaches to the treatment of post-COVID syndrome.

18.
International Journal of Social Welfare ; 32(3):352-368, 2023.
Article in English | Academic Search Complete | ID: covidwho-20237665

ABSTRACT

In this study, we investigated the household income of families with children. Our specific interest was the earned income losses during the COVID‐19 pandemic, and how social transfers have mitigated those losses. We assessed the monthly income levels by comparing the information on the year prior to pandemic to income levels during COVID‐19 pandemic. We found that the pandemic affected all studied subgroups of families with children, with the most negative economic influence in May 2020. In addition, our results indicate that in Finland the social transfers protected fairly well against the negative economic impacts of the pandemic among families with children, especially among vulnerable families (those with lowest income level prior COVID‐19, with low parental education, single‐parent families and families with non‐Finnish‐born parents). The information gained from this analysis can be useful in economic recovery during and after COVID‐19 pandemic, and when preparing for future challenges. [ FROM AUTHOR] Copyright of International Journal of Social Welfare is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

19.
Journal of Bio-X Research ; 6(1):23-36, 2023.
Article in English | EMBASE | ID: covidwho-20237621

ABSTRACT

Objective: Although the neurological and olfactory symptoms of coronavirus disease 2019 have been identified, the neurotropic properties of the causative virus, severe acute respiratory syndrome-associated coronavirus 2 (SARS-CoV-2), remain unknown. We sought to identify the susceptible cell types and potential routes of SARS-CoV-2 entry into the central nervous system, olfactory system, and respiratory system. Method(s): We collected single-cell RNA data from normal brain and nasal epithelium specimens, along with bronchial, tracheal, and lung specimens in public datasets. The susceptible cell types that express SARS-CoV-2 entry genes were identified using single-cell RNA sequencing and the expression of the key genes at protein levels was verified by immunohistochemistry. We compared the coexpression patterns of the entry receptor angiotensin-converting enzyme 2 (ACE2) and the spike protein priming enzyme transmembrane serine protease (TMPRSS)/cathepsin L among the specimens. Result(s): The SARS-CoV-2 entry receptor ACE2 and the spike protein priming enzyme TMPRSS/cathepsin L were coexpressed by pericytes in brain tissue;this coexpression was confirmed by immunohistochemistry. In the nasal epithelium, ciliated cells and sustentacular cells exhibited strong coexpression of ACE2 and TMPRSS. Neurons and glia in the brain and nasal epithelium did not exhibit coexpression of ACE2 and TMPRSS. However, coexpression was present in ciliated cells, vascular smooth muscle cells, and fibroblasts in tracheal tissue;ciliated cells and goblet cells in bronchial tissue;and alveolar epithelium type 1 cells, AT2 cells, and ciliated cells in lung tissue. Conclusion(s): Neurological symptoms in patients with coronavirus disease 2019 could be associated with SARS-CoV-2 invasion across the blood-brain barrier via pericytes. Additionally, SARS-CoV-2-induced olfactory disorders could be the result of localized cell damage in the nasal epithelium.Copyright © Wolters Kluwer Health, Inc. All rights reserved.

20.
Socialni Studia/Social Studies ; 19(2):55-74, 2022.
Article in Czech | Scopus | ID: covidwho-20236863

ABSTRACT

The Covid-19 pandemic has affected the work, personal, and family lives of all Czechs. In this regard, single parents are one of the most vulnerable groups. They are very frequent recipients of external support, provided by the state or by grandparents. Government restrictions, accompanied by, among other things, reduced availability of institutional childcare services, have significantly increased parents' demand for informal childcare. However, grandparents have not been able to fully satisfy this demand. Within the proposed typology, the so-called risk group of single parents who did not receive the required childcare support concerning school preparation or free time, as well financial or material help, was identified. The size of this group grew during the pandemic. According to regression analysis, parents of preschool and younger school children, working in precarious forms of work, in a low-income situation, and/ or in rental housing, were at higher risk of falling into the group of single parents who need informal support. © 2022 Masaryk University. All rights reserved.

SELECTION OF CITATIONS
SEARCH DETAIL